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LRO in Lattice Systems of Linear Classical and
Quantum Oscillators. Strong Nearest-Neighbor
Pair Quadratic Interaction
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For systems of one-component interacting oscillators on the d-dimensional
lattice, d>1, whose potential energy besides a large nearest-neighbour (n-n)
ferromagnetic translation-invariant quadratic term contains small non-nearest-
neighbour translation invariant term, an existence of a ferromagnetic long-range
order for two valued lattice spins, equal to a sign of oscillator variables, is estab-
lished for sufficiently large magnitude g of the n-n interaction with the help of
the Peierls type contour bound. The Ruelle superstability bound is used for a
derivation of the contour bound.

KEY WORDS: Ferromagnetic long-range order; Peierls argument; rescaling;
Ruelle superstability bound.

1. INTRODUCTION AND MAIN RESULT

Let's consider the system of one-dimensional oscillators on the d-dimen-
sional lattice Zd, with the potential energy (on a set 4 with the finite
cardinality |4| )

U(q4)= :
x # 4

(u(qx)&2dgq2
x)+ g :

|x& y|=1, x, y # 4

(qx&qy)2+U$(q4), g�1

(1.1)

Here qx the oscillator coordinate taking value in R, qX=(qx , x # X ), the
one-particle potential (external field) u is a bounded below even polynomial
having a degree deg u=2n, U$ is an even translation invariant function
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such that U satisfies the superstability and regularity conditions, |x| is the
Euclidean norm of the integer valued vector x, d>1. Primes in letters used
in this paper will not mean differentiation.

Let ( )4 , ( ) denote the Gibbs classical or quantum average for the
system confined to 4 and the system in the thermodynamic limit, i.e.,
4=Zd, respectively.

For classical systems

(FX)4=Z&1
4 | FX (qX) e&;U(q4) dq4 , Z4=| e&;U(q4) dq4

where the integration is performed over R |4|.
If F� X is the operator of multiplication by the function FX (qX) then the

quantum average is given by

(FX) 4=Z&1
4 Tr(F� X e&;H4

), Z4=Tr(e&;H4
)

where H4=&(1�2m) �x # 4 �2
x+U(q4), and �x is the partial derivative in qx .

The corner stone of proving an existence of lro, using generalized
Peierls argument, is the following contour bound

� `
(x, x$) # 1

/+
x /&

x$�4
�e&E |1 | (1.2)

where 1 is a set of nearest neighbours, |1 | is the number of them in it,

/+
x =/(0, �)(qx), /&

x =/(&�, 0)(qx)

/(a, b) is the characteristic function of the open interval (a, b).
The bound (1.2) was earlier derived in refs. 1 and 2 (see Remarks 1

and 2) for several classes of classical ferromagnetic systems or classical
systems with the nearest-neighbour pair interaction (see also refs. 3�5).

If one puts sx=sign qx , then taking into account that /+(&)
x =

1
2 [1+(&) sx] one obtains

4(/+
x /&

y ) 4=1+(sx) 4&(sy)4&(sxsy)4

Since the systems are invariant under the transformation of changing
signs of the oscillator variables we have

(sxsy) 4=1&4(/+
x /&

y ) 4

854 Skrypnik



Now in order to prove the ferromagnetic long-range order for the spins sx

one has to show that the average in the rhs in the equality is strictly less
than 1

4 . This can be proved with the aid of the following lemma.(6, 2)

Lemma 1.1. If the bound (1.2) holds, d>1, and e&E is sufficiently
small then there exist positive numbers a, a$ such that

(/+
x /&

y ) �a$e&aE (1.3)

So, if one shows that E can be made arbitrary large while increasing
g or ;, then the lro for the above spins will be proved.

In this paper we show that this argument can be used for proving the
ferromagnetic lro for sufficiently large g (see Remark 8) for the systems, in
which interaction is neither ferromagnetic nor n-n, but essentially ferro-
magnetic for sufficiently large g (see Remark 5).

We establish (1.2) for the simplest polynomial u(q)='q2n (see
Remark 7) with the help of the Ruelle superstability bound(7) and show
that E in (1, 2) is positive and growing for growing g, or more precisely

E=e0&2&1 ln(e$e0)&E0 , e0=[ gn 2d('n)&1]1�(2n&2) (1.4)

where e0 is the minimum of the external potential u0
g(q)='g&nq2n&2dq2

which has only two real minima, namely e0 , &e0 , E0 depends on g, ; and
is determined from the superstability bound for the correlation functions
and reduced density matrices with rescaled and translated variables. E0 is
bounded in g for classical systems and grows slowly for quantum systems
(see Lemma 1.2). Positive constant e$ can be found in ref. 14.

The reduced density matrices are expressed via FK (Feynmann�Kac)
formula in terms of correlation functions of a Gibbs Wiener (loop) path
system.

The proposed technique is based on establishing an asymptotic
behaviour in g of three Lebesque and three Wiener integrals (exp[ 1

2E 0],
I0u , Iu) in the classical and quantum cases, respectively. E0 and c0 from the
superstability bound (Theorems 2.1�3.1) for classical correlation functions
and correlation functions of a Gibbs Wiener path system depend on them.
This behavior is governed by the positive functions vg appearing in the
superstability and regularity conditions for the rescaled and translated
potential energy Ug(q4+e0) (see (2.4)�(2.5), (3.4)�(3.5)). They have to
converge to a quadratic polynomial in the limit of the infinite g. The
conditions of Theorem 1.1 guarantee this. The most significant fact in the
technique is a convergence of u0

g(q+e0)&u0
g(e0) to a positive quadratic

polynomial in the limit of the infinite g.
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This technique is inspired by the technique proposed in ref. 8 for quan-
tum ferromagnetic systems, which by rescaling of the oscillator variables,
call be reduced to the above systems with the pair quadratic infinite-range
interaction (see Remark 6)

U$= :
x, y # 4

Cx& y(qx&qy)2, u(q)='q4

In this paper a complicated version of (1.2) is proposed and lro is
proven for Gibbs loop path system associated with the quantum system via
FK formula and unit spins which are signs of ail averaged Wiener path.
A small parameter, appearing in the potential energy, determining a depth
of the symmetric wells of the external potential is not associated with the
magnitude of n-n interaction in it.

Our approach stresses the necessity of considering a large-magnitude
n-n interaction which determines the depth of the symmetric wells of the
external potentials u0(q)='q2n&2dgq2, u0

g(q)=u0(q&1�2q) (see Remark 4).
Proofs of an existence of an order parameter for ferromagnetic quantum

oscillator systems with n-n interaction, which are based on the reflection
positivity, can be found in refs. 9 and 10 (see also ref. 11). Vanishing of the
order,parameter in the quantum limit (mass is vanishing) is established in
ref. 12.

Other important applications of the superstability bounds in perform-
ing the thermodynamic limit and PS (Pirogov�Sinai) theory for classical
oscillator systems may be found in refs. 13 and 10, respectively.

By &9&1 we'll denote the L1-norm of the function 9: Zd � R.
W$ will, also, determine the interacting part of the potential energy U$

W$(qX1
; qX2

)=U$(qX1 _ X2
)&U$(qX1

)&U$(qX2
)

Theorem 1.1. Let the potential energy of the one-component
oscillator classical or quantum system is given by (1.1), u(q)='q2n. Let,
also, U$ be a translation invariant and an even function such that the
condition of superstability and regularity hold for it

U$(q4)� & :
x # 4

[Bv0(qx)+B$], v0(q)= :
l

j=1

glj q2j, l<n

|W$(qX1
; qX2

)|� 1
2 :

x # X1, y # X2

9$|x& y|(v0(qx)+v0(qy)), 9$|x|�0

where for non-negative, U$lj< j, j>1, l1�1, and l j�0 if U$ is non-
positive; B, B$, 9 |x| are non-negative constants, &9$&1<�.
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Then there is the ferromagnetic lro in classical and quantum systems
for the spins sx for sufficiently large g: g>>1, i.e., (sxsy)>0.

Since sx are scale invariant and their average is not changed after
rescaling of oscillator variables, we can deal with the rescaled by g&1�2

variables and the potential energy Ug

Ug(q4)= :
x # 4

u0
g(qx)+ :

|x& y|=1, x, y # 4

(qx&qy)2+U$(g&1�2q4) (1.5)

The correlation functions or reduced density matrices generated by Ug

will be denoted by \g .
The main idea of the proof originates from the inequality

� `
(x, x$) # 1

/+
x /&

x$�4
�(e$e0) |1 |�2 e&e0 |1 |(eQg, 1) 4 (1.6)

where e$ is a positive constant, e0 is a growing function of g, the expectation
value is determined by \g and

Qg, 1 (q4)= :
(x, x$) # 1

Qg(qx , qy)

Qg(qx , qy)=
1
e0 {(qx&qx$)

2+
4
3

( |q2
x&e2

0 |+|q2
x$&e2

0 | )=
Here we used the inequality

/+(qx) /&(qx$)�(e$e0)1�2 e&e0 exp[Qg(qx , qy)]] (1.7)

Theorem 1.1 will be proved if we prove the following lemma.

Lemma 1.2. Let the conditions of Theorem 1.1 be satisfied. Let,
also, e0 be given by (1.4). Then there exists a function E0(g) on the interval
[1, �) such that

(eQg, 1 ) �e |1 | E0 (1.8)

For the classical systems E0 is a bounded function on the interval
[1, �).

For the quantum systems if

k(g)=(1+e&- g�m ;)&1 (1&e&- g�m ;)&
20
3

e&1
0 �g

m
>0 (1.9)
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then there exists a bounded continuous functions E
*

(g) on [1, �) such
that

E0�
1
2 _ln

gm
k(g)

&ln(1&e&2 - g�m ;)&+�g
m \ 64

9k(g)
&

;
2++E

*
(g) (1.10)

Lemmas 1.1, 1.2, i.e., (1.3) and (1.10) prove Theorem 1.1 since e0

grows faster than - g. Function E
*

in the lemma is defined by (3.9)�(3.11),
(3.14).

In the second and third sections we'll give the proof this lemma for
classical and quantum systems, respectively. The third section ends by
remarks which may clarify some details of the proposed approach. Proofs
of Lemma 1.1 and (1.7) are standard and will not be give here (see refs. 6,
2, 8, and 14).

2. LEMMA 1.2 VIA SUPERSTABILITY ARGUMENT.
CLASSICAL SYSTEMS

For classical systems with the rescaled potential energy

(FX) 4=Z&1
4 | FX (qX) e&;Ug(q4) dq4=| FX (qX) \4

g (qX) dqX

\4
g (qX)=Z&1

4 | e&;Ug(q4) dq4"X , Z4=| e&;Ug(q4) dq4

By \g and (FX) we'll denote the Gibbs correlation functions and the
Gibbs average in the thermodynamic limit, respectively.

Changing the variables qx � qx&e0 , in the integral in the right-hand-
side of (1.6) and using the translation invariance of the Lebesque measure
we obtain

(eQg, 1)=| \g(q1+e0) exp[Qg, 1 (q1+e0)] dq1

q1=(qx , qy ; (x, y) # 1 ) (2.1)

Qg, 1 (q1+e0)� :
(x, x$) # 1 {

10
3e0

(q2
x+q2

x$)+
8
3

(|qx |+|qx$ | )]=
qX+e0=(qx+e0 , x # X )
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The polynomial Q becomes bounded in g if it is translated by e0 . As a
result, we have to prove that the correlation functions, translated by e0 , in
the limit of growing g satisfy the usual superstability bound.

It is not difficult to check that if e0 is given by (1.4) then

u0
g(q)=2dn&1[e&2n+2

0 q2n&nq2]

From this we immediately see that

u0
g(q+e0)= pg(q)+bq2&b$, b=2dn&1(2n(n&1)&n), b$=2d

n&1
n

e2
0

where pg is a bounded below polynomial in e&1
0 and q (the linear term

proportional to e0 is absent in it)

pg(q)=2dn&1 :
2n

s=3

s ! (2n&s) !
n !

qse2&s
0

Now we have to establish the accurate superstability and regularity
conditions for the translated by e0 potential energy.

The superstability bound is given by

Ug(qX+e0)� :
x # X

u~ g(qx)&|X | Bg , Bg=b$+B$ (2.2)

where

u~ g(q)=(u0
g(q+e0)+b$)&Bv0

g(q), v0
g(q)=v0(g&1�2q)

For a non-negative U$

u~ g(q)=u0
g(q+e0)+b$

Let's put

U
* g(qX)=Ug(qX+e0)& :

x # 4

u
* g(qx)+|X | Bg

u
* g=u~ g&vg , vg(q)=q2+v0

g(q) (2.3)

Bg diverges if g tends to infinity since b$ diverges. We can add |4| Bg to the
potential energy since the expression for the correlation functions is not
changed after this.
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Then the following superstability condition holds

U
* g(qX)� :

x # X

vg(qx) (2.4)

The regularity condition, also, holds

|W
* g(qX1

; qX2
)|=|U

* g(qX1 _ X2
)&U

* g(qX1
)&U

* g(qX2
)|

� 1
2 :

x # X1 , y # X2

9 |x& y|[vg(qx)+vg(qy)], X1 & X2=<
(2.5)

where 9 |x|=2$ |x|, 1+9$|x| .
Applying |X |&1 times the regularity condition the following important

condition is also derived

U
* g(qX)� :

x # X

U� g(qx), U� g(q)=U
* g(q)+&9&1 vg(q) (2.6)

From the definition of the functions determining U� g , taking into
account that Ug(q)=u0

g(q), we derive

U� g(q)=B$+(1+&9&1) q2+(1+B+&9&1) v0
g(q)

Let's put

\4

* g(q4)=exp {; :
x # 4

u
* g(qx)= \4

g (q4+e0)

Then \4

* g are expressed in terms of U
* g after adding to Ug the large

in g terms independent of oscillator variables

\4

* g(qX)=Z&1

* 4 | e&;U
* g(q4)+

* g(dq4"X), Z
* 4=| e&;U

* g(q4)+
*

(dq4)

(2.7)

where

+
* g(dqY)=exp {&; :

x # Y

u
* g(qx)= dqY

As a result of the superstability and regularity conditions for U
* g the

following theorem is true.(7)
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Theorem 2.1. Let the condition (2.4)�(2.5) hold for a positive
polynomial vg and the function u

* g be such that the measure +
* g is finite.

Then for arbitrary 0<3=<1, r>0 for the correlation functions defined by
(2.7) the following (superstability) bound is valid

\4

* g(qX)�exp {& :
x # X

[;(1&3=) vg(qx)&c0(I &1
r, u

* g
, Iu

*g
)]= (2.8)

where c is a positive continuous monotonous growing at infinity function,

Ir, u=e&1�2; &9&1 vg(r)I0u , I0u=|
|q|�r

exp[&;[U� g+u(q)]] dq

Iu=| exp[&;[(1&3=) vg(q)+u(q)]] dq

We formulated the Ruelle result in such an extended form in order to
trace the dependence in g in all the terms.

The function c0 is given by the formula

c0(z, z$)=ln(1+!z+ f (zz$)), f (z)= :
s�P>1

e&=�((1+:)s) Vs zVs

where Vs=(2(1+:)s+1)d and !, : are positive constant, � is a positive
function such that

�(l+1)
�(l )

�
l+1

l
, :

s

�( |x| ) 9 |x|<�, &9&1 [(1+3:)2d+2&1]�
1
4

(2.1) and Theorem 2.1 yields

(eQg, 1) �e |1 | E0, E0=E0+e
*

(g), e
*

(g)=2c0(I &1
r, u

* g
, Iu

* g
)

(2.9)

E0=2 ln | exp {&;(1&3=) vg(q)&;u
* g(q)+

10
3e0

q2+
8
3

|q|= dq

As a result, (1.2) holds with E given by (1.4). From the conditions of
the Theorem 1.1 it follows that E 0 and c

*
exist in the limit of vanishing g&1.

Here we have to rely on the following significant equalities

lim
g&1 � 0

(u0
g(q+e0)+b$)=bq2, lim

g&1 � 0
vg(q)=kq2, b�4d
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where k=1 or k=2. From the inequalities ( |q|�r)

U� g(q)�B$+(1+&9&1) r2+(1+B+&9&1) v0
g(r) (2.10)

u
* g(q)�u~ g(q)+vg(q)� pg(r)+br2+vg(r)+Bv0

g(r) (2.11)

it follows that

(I &1
0u

* g
)&1�r&1e ;pg

+(r) (2.12)

p+
g (r)= pg(r)+B$+(2+&9&1) r2+(2+B+&9&1) v0

g(r) (2.13)

Polynomial p+
g (r) is uniformly bounded in g

p+
g (r)� p0(r)+B$+(2+&9&1) r2+(2+B+&9&1) v0(r)= p� (r)

(2.14)
p0(r)=2dn&1 :

2n

s=3

s ! (2n&s) !
n !

rs

So, e
*

(g) is a bounded function.
Classical part of Lemma (1.2) is proved. Application of Lemma 1.1

completes the proof of Theorem 1.1 for classical systems.

3. LEMMA 1.2 VIA SUPERSTABILITY BOUND.
QUANTUM SYSTEMS

The proof of the quantum part of Theorem 1.1 goes along the lines of
the previous section. Its starting point is an application of the FK formula
for the kernel of the Gibbs semigroup e&;H4

and expressing the Gibbs
averages together with RDMs (reduced density matrices) in terms of a
Gibbs measure P0 , defined on oscillator loop paths, and path correlation
functions. From translation invariance of P0 the analogue of (2.1) is true
and the superstability bound is established for the rescaled by g&1�2, trans-
lated by e0 path correlation functions (Theorem 3.1). It has the same struc-
ture as in Theorem 2.1 with c0 depending on two Wiener integrals (I0u , Iu)
and vg depending on a Wiener path. So, the proof the quantum part of
Theorem 1.1 is reduced to obtaining uniform in g bounds for the integrals.
We do this with the help of the Golden�Thompson inequality, Schwartz
inequality and an explicit expression for the transition probability density
of the Ornstein�Uhlenbeck process.

For quantum rescaled systems the Gibbs average of the operator F� X

of multiplication by the function FX (qX ) is determined by the RDMs
\4

g (qX | qx)
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(FX ) 4=Z&1
4 Tr(F� Xe&;Hg

4
)

=Z&1
4 | FX (qX ) e&;Hg

4
(q4 ; q4) dq4

=| FX (qX ) \4
g (qX | qX ) dqX (3.1)

\4
g (qX | qX )=(- g) |X | | \4

g (|X ) P g;
qX , qX

(dwX ), \4
g (|X )

=Z&1
4 | e&Ug(|4)P0(d|4"X ) (3.2)

where |=(q, w) # 0*=R_0, 0 is the probability space of Wiener paths
(w # 0), Pt

q, q$(dw) is the Wiener (conditional) measure concentrated on paths,
starting from q and arriving in q$ at the time t, P0(d|)=- g dqP g;

q } q(dw),

Ug(|4)= g&1 |
g;

0
Ug(w4(t)) dt=|

;

0
Ug(w4(gt)) dt

In deriving the formulas we applied the Feynmann�Kac formula to
the kernel e&;H 4

(- g&1 qX ; - g&1 q$X ) of the operator e&;H4
and the

relation

| P t
- g&1 q, - g&1 q$(dw) f (w(t1),..., w(tn))

=- g | P gt
q, q$(dw) f (- g&1 w(gt1)),..., - g&1 w(gtn)) (3.3)

which follows from

exp[t�2](- g&1 q; - g&1 q$)=(4?t)&1�2 exp {&
|q&q$|2

4tg =
=- g exp[tg�2](q; q$)

The rescaled Hamiltonian is given by

H 4
g = g \&

1
2m

:
x # 4

�2
x+ g&1Ug(q4)+
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In order to prove Lemma 1.2 one has to estimate \4
g (qX+e0 | qX+e0).

From the translation invariance of the conditional Wiener measure
and the measure P0 it follows that

\4
g (qX+e0 | qX+e0)=(- g) |X | | \4

g (|X+e0) P g;
qX , qX

(dwX )

\4
g (|X+e0)=Z&1

4 | e&Ug(|4+e0)P0(d|4"X ), Z4=| e&Ug(|4+e0)P0(d|4)

where |+e0=w(t)+e0 , w(0)=q, t # [0, ;].
As a result

(eQg, 1) 4=(- g) |1 | | eqg, 1 (q1+e0)) \4
g (|X+e0) dq1P g;

q1 , q1
(dw1)

It is evident that Lemma 1.2 can be proved now with the help of the
analogue of the superstability bound for \4

g (|4+e0) which was proved by
Park.(15)

In order to prove the analogue of Theorem 2.1 one has to derive the
superstability and regularity conditions for U

* g(|4)=Ug(|4+e0). But
now it is easy since in the previous section we established them for
Ug(q4+e0).

So, let by u
* g(|), vg(|), U� g(|) be denoted the corresponding func-

tions, depending on w(gt), being integrated by dt on the interval [0, ;] and

U
* g(|4)=|

;

0
U

* g(w4(gt)) dt

where U
* g(w4(gt)) is defined by (2.3) (instead of |w may be written).

Then

U
*

(|X )� :
x # X

vg(|x) (3.4)

|W
* g(|X1

; |X2
)|=|U

* g(|X1 _ X2
)&U

* g(|X1
)&U

* g(qX2
)|

� 1
2 :

x # X1 , y # X2

9 |x& y|[vg(|x)+vg(|y)], X1 & X2=<
(3.5)

U
*

(|X )� :
x # X

U� g(|x)
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Let's put

\4

* g(|4)=exp { :
x # 4

u
* g(|x)= \4

g (|4+e0)

Hence

\4

* g(|X )=Z&1

* 4 | e&U
*g(|4)P

* 0(d|4"X ), Z V 4=| e&U
*g(|4)P

*0(d|4)

(3.6)

where where

P
*0(d|Y)=exp {& :

x # Y

u
* g(|x)= P0(d|Y)

As a result of (3.3)�(3.5) the following theorem is true.

Theorem 3.1. Let the condition (3.4)�(3.5) hold for a positive
polynomial vg(q) and the functional u

* g be such that the measure P
*0 is

finite. Then for arbitrary 0<3=<1, r>0 for the correlation functions
defined by (3.6) the following (superstability) bound is valid

\4

* g(|X )�exp {& :
x # X

[(1&3=) vg(|x)&c0(I &1
r, u

*g
, Iu

*g
))]= (3.7)

where is a positive continuous monotonous growing at infinity function,

Ir, u=e&1�2; &9&1 v� g, r I0u , v� g, r=ess sup
| # 0*r

vg(|)

I0u
*g

=|
0*r

exp[&[U� g(|)+u
* g(|)]] P0(d|)

Iu
*g

=| exp[&[(1&3=) vg(|)+u
* g(|)]] P0(d|)

where 0r*=[| # 0* : |w(t)|�r].
The proof of this theorem my be given without difficulty following the

proof of Theorem 2.1.
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Proof of Lemma 2.1. Theorem 3.1 yields the following equalities

(eQg, 1) �e |1 | E0, E0=E0+e
*

(g), e
*

(g)=2c0(I &1
r, u

*g
, Iu

*g
) (3.8)

E0=2 ln - g | exp {&;[(1&3=) vg(w)&u
* g(w)]

+
10
3e0

q2+
8
3

|q|= Pg;
q } q(dw) dq

e
*

(g) is a bounded in g since U� g(w), u
* g(w) are polynomial functionals and

the function c is continuous.
For E 0 the following bound is valid after adding to the argument of

the exponent 1
4 (w$2

g (;)&w$2
g (;)) and applying the Schwartz inequality (for

the measure - g dqPg;
q, q(dw))

eE0
� gI0I0

I0=| exp { 20
3e0

q2+
16
3

|q|&
1
2

w$2
g (;)= P g;

q } q(dw) dq

I0=| exp[&2;[(1&3=) vg(w)+u
* g(w)]+

1
2

w$2
g (;)] P g;

q } q(dw) dq

where w$2
g (;)=�;

0 w2(gt) dt.
From the FK formula it follows that I0 is the trace of the kernel of

the exponent of a perturbed generator of the Wiener process. So, the
Golden�Thompson inequality Tr(eA+B)�Tr(eAeB) yields

gI0�- gm (2?;)&1�2 | exp {&2; _(1&3=) vg(q)+u
* g(q)+

q2

4 &= dq

=- gm I &
0 (3.9)

Here we took into account that

exp[t�2](q; q$)=(4?t)&1�2 exp {&
q&q$|2

4t =
I0 is finite since b�4d.

For I0 after the rescaling q=(m&1g)1�4 q~ we have (q̂2 is the operator
of multiplication by q2)

I 0=\ g
m+

1�4

| exp {&g;(&(2m)&1 �2+
1

2g
q̂2)= ((m&1g)1�4 q, (m&1g)1�4 q)

_exp[3&1(20e&1
0 - m&1g q2+8(m&1g)1�4 |q| )] dq
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From (3.3) it follows that

\ g
m+

1�4

exp {& g; \&
1

2m
�2+

1
2g

ĝ2+= ((m&1g)1�4 q, (m&1g)1�4 q$)

=e&2&1 - g�m ; exp {&�g
m

;
2

(&�2+q̂2&1)= (q, q$)

=e&2&1 - g�m ; exp {&
q2

2
+

q$2

2 =
_exp {&�g

m
; \&

1
2

�2+q̂�+= (q, q$)

=- ?&1 (1&e&2 - g�m ;)&1�2 exp {&
q2

2
+

q$2

2
&(1&e&2 - g�m ;)&1

_(q$&e&- g�m ;q)2&2&1 � g
m

;=
Here we used the relation

1
2 (&�2+q̂2&1)=e&q̂2�2[& 1

2�2+q̂�] e q̂2�2

and the well-known formula for the density of the transition probability for
the Ornstein�Uhlenbeck process. Hence

I0=- ?&1 e&- g�m ;(1&e&2 - g�m ;)&1�2

_| exp {3&1 \20e&1
0 �g

m
q2+8 \ g

m+
1�4

|q|+=
_exp[&(1+e&- g�m ;)&1 (1&e&- g�m ;) q2] dq

As a result

I 0=(1&e&2 - g�m ;)&1�2 k(g)&1�2 exp {64
9

k(g)&1 �g
m= e&1�2 - g�m ; (3.10)

eE 0
�- mg e&- g�m (;�2&64�9 k(g)&1)(1&e&2 - g�m ;)&1�2 k(g)&1�2 I &

0 (3.11)

where k(g) is given by (1.9).
Applying the Golden�Thompson inequality we obtain

Iu
*g

�- m I &
0 (3.12)
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Repeating (2.10)�(2.11), using the equality

- g | P g;
q, q(dw)=- (2?;)&1 m

we derive, also, the analogue of (2.12) for the quantum case

(I &1
0u

*g
)&1�- 2?;m&1 r&1e ;p+(r) (3.13)

As a result.
Combining all these bounds we see that e

*
(g) is bounded and (1.10)

holds with

E
*

(g)=ln I &
0 +e

*
(g) (3.14)

Lemma 1.2 is proved. Theorem 1.1 is proved with an aid of Lemma 1.1
and (1.7).

Remarks. 1. If one cancells the boundary term g �x # �4 q2
x then

(1.1) is reduced to

U(q4)= :
x # 4

u(qx)& g :
|x& y|=1, x, y # 4

qxqy+U$(q4)

where �X is the boundary of X. If U$>0 then the systems considered in
ref. 1 can be recovered.

Surprisingly the proposed technique does not respect this boundary
term since it creates an obstruction for obtaining the bound from above
(2, 6) for the rescaled and translated potential energy which guarantees
uniform boundedness in g of I &1

0u
*g

.

2. If one cancells the boundary term �x # �X u(qx , qx) then (1.1) is
equal to

U(qX)= :
x, y # X, |x& y|=1

u(qx , qy)+U$(qX) u(qx , qy)

=(4d )&1 (u(qx)+u(qy))& gqxqy

If U$ is expressed in the same form as the first term in the rhs of the
last equality then systems which are dealt with in ref. 2 can be recovered.
Theorem (1.1) can be proved for such the potential energy taking into
account in a special way a contribution of the boundary term to the super-
stability, regularity conditions and (2.6) for the rescaled and translated
potential energy (see ref. 14).
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3. Theorem 1.1 proves an existence of a phase transition for the case
U$ is expressed through a pair (special) potential, since it is known that in
this case in the high-temperature phase there is an exponential decrease of
correlations.(16) Assumptions on this potential is stronger than the super-
stability anti regularity conditions.

4. The magnitude of n-n interaction plays an exceptional role in the
proposed approach since vanishing of it automatically implies vanishing of
the spin two-point function for n-n sites. This means that E in (1.2) has to
depend on the magnitude of n-n interaction, tending to zero together with
it. So, one ought, always, to rescale by the magnitude (in an appropriate
power) all the variables, when starting to derive the Peierls type contour
bound using (1.7) with e0 depending on it.

5. Essentially ferromagnetic interaction may be characterized by the
property that the ferromagnetic configuration, consisting of the coordinate
e0 (minimum of a one-particle potential) at each lattice site, is more
favorable for sufficiently large g than the associated antiferromagnetic
(staggered) configuration, consisting of the coordinate e0 at the even sub-
lattice and -e0 at the odd sublattice, i.e., the potential energy on the former
configuration is less than on the latter. This property follows from the
superstability condition for the rescaled U$g in the formulation of
Theorem 1.1 and the fact that the growth in g of g&se2s

0 , s<n, is more slow
than e2

0 . In other words, the ferromagnetic n-n part of the potential energy
suppresses antiferromagnetic ground states for sufficiently large g.

6. If one puts

U$(q4)= :
x, y # 4

Cx& y(qx&qy)2, |Cx& y |�C 0
|x& y| , &C0&1<�

where &C0&1 does not depend on g then the conditions of Theorem 1.1 are
satisfied.

7. The proof of Theorem 1.1 for classical systems with more general
polynomial potentials u can be found in ref. 14. Generalization of this result
to quantum systems is straightforward.

8. The given expression for c0 in Theorems 2.1�3.1 allows to find a
dependence of g on ; such that lro occurs for sufficiently low temperature.
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